KSRM College of Engineering (Autonomous) Kadapa-516003

DEPARTMENT OF ECE

UG R18 VI Semester Syllabus

VI Semester

S. No.	Subject Code	Subject	Category	L	Т	Р	IM	EM	Credits
1	1804601	Embedded Systems	EC	3	0	0	30	70	3
2	1804602	Digital Communication	EC	3	0	0	30	70	3
3	1804603	Microwave Engineering	EC	3	0	0	30	70	3
4	1804604	Open Elective I	OE	3	0	0	30	70	3
5	1804605	Professional Elective I	ECEL	3	0	0	30	70	3
6	1804606	Analog and digital communication Lab	EC	0	0	3	50	50	1.5
7	1804607	Digital Signal Processing Lab	EC	0	0	3	50	50	1.5
8	1824608	Micro Wave &Optical Communication Lab	EC	0	0	4	50	50	2
9	1899609	Organizational Behaviour	МС	3	0	0	30		0
10	1804610	Internship	PR				100		2
		Total:							22

S. No.	Track Title / Speciali zation Commun	0	Requisite - II Analog &	1	Professi onal Elective – II Information	Professi onal Elective - III Radar and	Professi onal Elective - IV CMC
1	ication Systems	Systems	Digital Communicati ons	Communic ation	Theory & Coding	Satellite Communi cation	
2	Embe dded syste ms	Digital system Design	Microproc essors & Microcontr ollers	Data structures and Algorithm s	Real Time Operat ing Syste ms	Computer System Architectur e	SoC Archite cture
3	Signal Processing	Signas & Systems	Digital Signal Processi ng	Digital Signal Processor s & Architect ures	Scienti fic Compu ting	Digital Image & Video processing	Speech Proces sing
4	VLSI Design	Digital system Design	Integrated Circuits & Application s	Analog IC Design	CMOS Design	Digital IC Design	Low Power VLSI Design
5	RF & Microwave Engineerin g	Electroma gnetic Theory	Antennas & Wave Propagation	Introducti on to MEMS	Electroma gnetic Interferenc e & Compatibi lity	Cognitive Radio	RF System Design

Electronics & Communication Engineering -- Tracks and Courses

Course 7	Fitle]	Embedd	led Syst	ems		B. Tech. EC	E VI Sem	I
Course C	Code	Category	He	ours/We	ek	Credits	Maxin	num Mar	ks
180460	01	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	-		3	30	70	100
Mid Exa	m Dur	ation: 2Hrs					End Exam	n Duratio	n: 3Hrs
Course O)bjecti	ves:							
• Th	ne maii	n objective of t	he cours	se is to g	get stud	ents famili	ar with the typ	oical probl	ems and
co	onstrair	its that arise wh	nen desig	gning an	d devel	oping emb	edded systems	-	
• Th	ne cour	se will also int	roduce t	heoretic	al and r	bractical so	lutions to these	e typical r	oroblems
		students are exp							
						acto to upp			
Course O	Dutcom	nes: On success	sful com	nletion of	of this c	ourse the	students will b	e able to	
CO 1		stand the funda		•					
COT	Under	stand the funda	incinai	concept		noeuueu sy	stem.		
CO 2	Get br	oad exposure	to and	understa	and var	ious appli	cations of em	hedded sy	stem in
		1			ina vai	ious uppin	cations of em	bedded by	stem m
	mausu	y, medicine, ar	ia delen	ce.					
CO 3	Learn	the embedded	design n	nodels					
	Leaill	nic enibedueu	uesigii li	1000015					
CO 4	Learn	the various ca	se studi	es of er	nbedde	d system	like smart car	d. adaptiv	e cruise
		l, mobile phone						.,	
	contro.	, moone phone	sonwal						

UNIT I

Introduction: Embedded systems overview, Design challenge, Processor technology, IC technology, Design technology. RT-Level combinational logic, Sequential logic (RT-Level), Custom single purpose processor design (RT-Level), optimizing custom single purpose processors.

UNIT II

General Purpose Processors: Basic architecture, Operation, Programmer's View, Development environment, Application specific Instruction Set processors (ASIPs).

UNIT III

State Machine and Concurrent Process models: Introduction, Models Vs Languages, Finite State Machine with Data path model (FSMD), Using State Machines, Program State Machine (PSM),Concurrent Process Model, Concurrent Processes, Communication among processors, Synchronization among processes, Implementation, Data flow model, Real-time Systems.

UNIT IV

Design Technology: Introduction, Automation-The parallel evolution of complication and synthesis, Logic, RT, Behavioral synthesis, System synthesis and hardware/software codesign,

Verification of hardware/software co-simulation, Reuse of intellectual property cores.

UNIT V

Embedded RTOS Concepts: Architecture of the Kernel, Tasks and Task Scheduler, interrupt

service routines, Semaphores, Mutex, Mail boxes, Message Queues, Event Registers, Pipes, Signals.

Text Books:

- 1. Embedded Systems Design A Unified Hardware/Software introduction by Frank Vahid, Tony D. Givargis, John Wiley & Sons. Inc.2002.
- 2. Embedded / Real-Time Systems: Concepts, Design and Programming Black Book by Dr. K.V.K.K. Prasad, Dreamtech Publications.

Reference Books:

- 1. Introduction to embedded systems by Raj Kamal, TMH, 2002.
- 2. An Embedded Software primer, David E.Simon, 1stedition, Addison Wesley professional, 2007.

Course	Title	Di	gital Co	ommuni	cation		B. Tech. EC	E VI Sem	I
Course	Code	Category	He	ours/We	ek	Credits	Maxin	num Mar	ks
18040	602	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	-		3	30	70	100
Mid Exa	am Dur	ation: 2Hrs					End Exam	n Duratio	n: 3Hrs
• 7 c	fo under channel o		ysis of di	gital con	mmunic	ations syst	em and fundar		f
-		nes: On success		•				e able to	
CO 1	Under	stand various	baseban	d digita	l transm	nission syst	ems		
CO 2	Analyz	the different	pulse di	gital mo	dulation	n technique	es.		
CO 3	Evalua compre	te channel cap ession.	acity for	distortio	on less o	data transn	nission and cod	ling for da	ıta
CO 4	Compr	whend the diffe	erent bar	nd pass d	ligital tr	ansmission	n systems.		
CO 5	Analyz	e and design e	rror con	trol tech	niques.				

Pulse-Digital Modulation: Review of sampling theorem, PCM system and its bandwidth requirement, Noise in PCM Systems, Quantization noise and SNR, Differential PCM, Delta modulation and Noise in delta modulation, Adaptive delta modulation, TDM, Asynchronous TDM, Comparison of TDM & FDM.

UNIT-II

Base band data transmission: Introduction, Matched filter, Inter-symbol Interference, Nyquist's Criterion for distortion less binary data, Correlative Level coding-Duobinary signaling, Modified Duobinary signaling, Partial response signaling, M-ary signaling scheme, Binary Vs M – ary, Equalization schemes, Eye diagrams.

UNIT-III

Band Pass Data Transmission: Model of band-pass data transmission systems, Gram-Schmidt Orthogonal Procedure, Geometric representation of signals, coherent detection of signals in the presence of noise, correlation receiver, matched filter receiver, Digital modulation schemes-ASK, FSK (coherent & Non Coherent), PSK, DPSK, Comparison of digital modulation schemes, M-ary signaling schemes- QPSK, 8/16PSK, and QAM.

UNIT-IV

Information theory: Introduction, Unit of information, Entropy, Rate of Information, Joint and conditional entropy, mutual information, channel models and channel capacity, Shannon's theorem-Continuous Channel, Channel capacity of a Gaussian channel (Shannon- Hartley theorem), Bandwidth vs S/N trade-off, source encoding of discrete memory less source-Shannon- Fano coding, Huffman coding.

UNIT-V

Error control coding: Linear block codes, matrix description, Hamming codes, Decoding, Binary cyclic codes, Algebraic structure, Encoding using shift register, syndrome calculation, Burst and random error correcting codes- Convolutional codes, code tree diagram, state diagram, trellis diagram Encoders and decoding algorithms.

Text Books:

1. Simon Haykin, "Communication Systems", 2nd & 4th Edition, Wiley Estern

2. Sam Shanmugam,, K "Analog & Digital Communication Systems", John Willey & Sons

3. R.P. Singh & S.D. Sapre, "Communication Systems, Analog & Digital", Tata McGraw-Hill

Reference Books:

1. B.P. Lathi, "Modern Digital and Analog Communication Systems", Oxford University Press, 2nd Edition, 1996

2.Taub, H & Schilling D.L.", Principles of Communication System, McGraw Hill, 3rd Edition, 2009.

3. Bernard Sklar, "Digital Communications", Prentice-Hall PTR, 2nd Edition, 2001.

Course	Title	Mie	crowave	e Engine	eering		B. Tech. EC	E VI Sem	l			
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
1804	603	EC	L	Т	Р	С	Assessment					
			3	-		3	30	70	100			
Mid Exa	am Dur	tion: 2Hrs End Exam Duration: 3Hrs										
Course	Objecti	ectives:										
		art Knowledge ave tubes and m					•	rowave ji	inctions,			
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to				
CO 1	Use V	Vave guide and	Microw	ave com	ponents	s for variou	us applications.					
CO 2	Analyz	ze various micro	o Wave	Oscillat	ors and	Amplifiers	8.					
CO 3	Descri	be fabrication of	of stripli	nes and	MICs d	& mie	crowave bench	setup for	r various			
	microv	wave measurem	ents.			-		-				
CO 4	Determine S – parameters of various microwave devices .											
CO 5	-	ute microwave devices	signal	paramet	ers, po	wer outpu	t and efficien	cy of mi	crowave			

Waveguides: Introduction to microwave frequencies and band, Rectangular wave guides, Excitation of wave guides. Wave equations, rectangular and circular waveguides for TE and TM modes, Cutoff frequency and wave length, Group and phase velocity, Wave impedance, Guide attenuation, Rectangular and cylindrical resonators, Q of the cavity resonators.

Microwave Components: Microwave hybrid circuits-S-parameters of two port network, Attenuators, Phase shifters, Wave guide Tees and their S-matrices, Bends, Corners and twists. Two hole Directional coupler and its S-matrix, Ferrites-composition and characteristics, Faraday rotation, Gyrator, Isolators and circulators, S-matrix of circulator and isolator.

UNIT-II

Microwave tubes-I: Limitations and losses of conventional tubes at microwave frequencies. Microwave tubes-O type and M type classifications. O type tubes: Two cavity klystron-structure, Reentrant cavities, Velocity modulation process and Applegate diagram, Bunching process and small signal theory-Expressions for output power and efficiency. Reflex Klystron – structure, Velocity Modulation, Applegate diagram, Mathematical theory of bunching, Output power, efficiency, Oscillating modes and output characteristics, Effect of repeller Voltage on output Power, Illustrative Problems.

UNIT-III

Helix TWTS: Significance, Types and characteristics of slow wave structures; Structure of TWT and amplification process, Suppression of oscillations, gain considerations.

M -**Type Tubes:** Introduction, Magnetrons, Different types, Cylindrical magnetron-Hull cutoff and Hartree conditions, Modes of resonance and PI-mode operation, Separation of PI-mode, Output characteristics, Illustrative Problems.

UNIT-IV

Microwave Solid State Devices: Classification, applications, Tunnel diode, Gunn diodeprinciples, RWH theory, Characteristics, Basic modes of operation - Gunn oscillation modes, IMPATT diode, PIN diode, Varactor diode, Crystal diode, Schottky Barrier diode, Parametric amplifier.

UNIT-V

Microwave Measurements: Measurement of frequency, Power, VSWR, Impedance, Reflection coefficient, Attenuation constant, S-parameters and Q of a cavity Resonator. Microwave ICs: Striplines and micro striplines, Advantages of MICs, Hybrid MICs, Monolithic

Text Books:

MICs- advantages, materials and fabrication,

- 1. Samuel Y Liao, "Microwave devices and circuits", Prentice Hall, 1999.
- 2. M. Kulkarni, "Microwave and Radar Engineering", Umesh Publications, 1998.
- 3. Annapoorna Das and Sisir K. Das, "Microwave Engineering", Tata McGraw-Hill, 2000.

Reference Books:

- 1. Herbert J. Reich, J. G. Skalnik, P. F. Ordung and H. L. Krauss, "Microwave principles," CBS publishers and distributors, New Delhi, 2004.
- 2. R. E. Collin, "Foundations for microwave engineering," IEEE press, John Wiley, 2nd Edition, 2002.
- 3. Om. P. Gandhi, "Microwave Engineering and Applications," Pergamon, 1981.

		Fib	er Optio	c Comm	unicati	on							
Course	Title		Open 2	Elective	εI		B. Tech. EC	Internal AssessmentEnd ExamsTotal3070100End Exam Duration: 3Hrsof fiber optic communication					
Course	Code	Category	He	ours/We	eek	Credits	Maxin	um Mar	ks				
18046	504	EC	L	Т	Р	С	Continuous Internal Assessment	Exams	Total				
			3	-		3							
		ation: 2Hrs					End Exam	n Duratio	n: 3Hrs				
Course (•												
		nderstand the functionality of each of the components of fiber optic communication											
•	ystem												
		understand the properties and principles of different types of optical fibers, and losses											
-		ur in fibers.			f (1			. 1				
		g schemes.	ing and	principi	e or opt	ical source	es (LED and L	ASER) ar	a power				
		0	n of vor	ousonti	ant data	otors (DIN	& ADD) and	optical rac	oivor				
								optical let					
• 1	o unue	istand the desig	in or opt	ical syst	ems, w		leasurements						
				-									
CO 1		•	res of C	ptical f	ibers ba	sed on m	odes, refractiv	e index a	nd fiber				
	materi												
CO 2	Analy	ze the different	kind of	losses in	n fibers	and optica	l fiber link des	ign param	eters.				
CO 3	Categ	orize the types	of opti	cal sour	ces and	optical de	etectors on the	basis of	physical				
	constr	uction and prine	ciple of	operatio	n.								
CO 4	Expla	plain the necessity for using splices, couplers and connectors in energy transmission.											
CO 5	Discus	ss WDM conce	pts, Opti	ical Am	olifiers,	Optical Sy	vstem design ar	nd Measur	rements.				

Introduction and Optical fiber waveguides: Historical Development, The General System, Advantages of Optical Fiber Communications, Ray Theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew Rays, Cylindrical Fiber – Modes, V Number, Mode coupling, Step Index fibers, Graded Index Fibers Single mode fibers - Cut off wavelength, Mode Field Diameter, Effective Refractive Index.

UNIT-II

Fiber Materials - Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers, Mechanical Properties of Fibers, Fiber Optic Cables. **Transmission Characteristics of optical fibers** - Attenuation, Material Absorption Losses in Silica Glass Fibers, Linear Scattering Losses, Fiber Bend Loss, Dispersion, Chromatic dispersion, Intermodal dispersion, Overall fiber dispersion, Polarization – Fiber Birefringence, Polarization Mode Dispersion.

UNIT-III

Optical Sources: Light Emitting Diodes (LEDs) - LED Structures, Light Source Materials, Quantum efficiency and LED Power, Modulation of LED. **LASER Diodes**- Laser Diode Modes and Threshold Conditions, Laser Diode Rate Equations, External Quantum Efficiencies, Resonant Frequencies. **Photo Detectors: Physical principles of photo diodes**- The PIN and Avalanche photo diode (APD), detector response time, structures for InGaAs APDs, temperature effect on avalanche gain, comparisons of photo detectors.

UNIT-IV

Power launching and Coupling-Source to Fiber Power Launching – Source output pattern, power coupling calculation, power launching versus wavelength, Equilibrium Numerical Aperture, **Lensing schemes for Coupling Improvement** -non imaging microsphere, Laser diode to fiber coupling, LED coupling to single mode fibers. **Fiber-to-fiber Joints** – Mechanical misalignments, Fiber related losses, Fiber end face preparation, **Fiber Splicing** – Splicing techniques, splicing single mode fibers, **Optical Fiber Connectors** – Connector types, Single mode fiber connectors- Connector return losses, **Passive components** – The 2 x 2 fiber coupler, Star couplers

UNIT-V

Optical receiver operation: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, **Optical system design** - Point to point links, system considerations, Link Power budget, Rise time budget, Transmission distance, **Operational principles of WDM** - Types, Fiber grating filters. **Measurements** – Optical Time domain Reflectometer (OTDR). Attenuation Measurements, dispersion Measurements, EYE Patterns. **Text Books:**

- 1. Gerdkeiser, "Optical fiber communications", McGraw Hill International Edition, 4th Edition, 2010.
- 2. John M. Senior, "Optical fiber communications", PHI, 3rd Edition, 2010.

Reference Books:

- 1. Max Ming-Kang Liu, "Principles and Applications of Optical Communications", TMH, 2010.
- 2. S. C. Gupta, "Text book on optical fiber communication and its applications", PHI, 2005.
- 3. Satish Kumar, "Fundamentals of Optical Fiber communications", , PHI, 2009.
- 4. DjaferKmynbaev Lowell L. Scheiner, "Fiberoptic communications Technology", Pearson Education pte. Ltd.

Course	Title	Data st	Tructure	s and A	U	ms	B. Tech. EC	E VI Sem	l				
Course	Code	Category	-	ours/We		Credits	Maxin	num Mari	ks				
18046	504	EC	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTota						
			3	-		3	30	70	100				
Mid Exa	ım Dur	ation: 2Hrs	n: 2Hrs End Exam Duration: 3Hrs										
• T • T • T	'o under 'o study 'o study	op skills and an rstand basic con algorithms as in detail about nes: On success	ncepts at they app t sorting,	oout link ly to tre searchin	ted lists es and g ng and	, stacks, qu graphs. hashing.	ieues.	e able to					
CO 1		stand the varie											
CO 2		ze data structur	•		• •								
CO 3	Apply	Apply and analyze tree traversal algorithms and graph traversal algorithms.											
CO 4	Organi	ize data in orde	r using v	various s	orting a	algorithms.							
CO 5	Ability	to understand	the cond	cept of h	ashing,	B-Trees an	nd B+-Trees.						

Introduction: Data structures, Primitive & Non Primitive data structures, Linear & Non Linear data structures, Linear Lists: Definition, Arrays: Definition, Linked Lists: Single Linked List-Definition, Insertion and Deletion operations, Doubly Linked List-Definition, Insertion and Deletion operations.

UNIT-II

Stacks: Definition, Array & Linked representations, Operations, Applications, Queues: Definition, Array & Linked representations, Operations, Circular Queues & Dequeues .

UNIT-III

Trees: Basic terminology, Binary Trees- Definition, Properties, Representation, Complete and Full Binary Tree, Tree Traversal Algorithm: In order, Preorder and Postorder, Priority Queues: Definition, Heaps, Leftist Trees, Binary Search Tree(BST): Definition, Operations & Implementations, BST with Duplicates, Indexed BST.

UNIT-IV

Balanced Search Trees: AVL, Red-Black & Splay Trees, Graphs: Terminology, Representations, Graph Traversal: Depth First Search (DFS), Breadth First Search (BFS), Minimum Spanning Tree.

UNIT-V

Sorting: Selection, Insertion, Bubble, Heap, Searching: Sequential & Binary Search. Hashing: Introduction, Hash Table representation, Hash Functions, Collisions: Introduction, Separate Chaining, Open Addressing, B-Trees, Operations on B-Trees, B+-Trees.

Text books:

1. An Introduction to Data Structures with applications, Jean Paul Trembley and Paul G. Sorenson, McGraw Hill.

2. Fundamentals of Data Structures in C, Horowitz, Sahni, Anderson Freed, Universities press.

3. Data Structures using C++, Varsha H.Patil, Oxford University Press.

Reference books:

1. Data Structures, Algorithms and Applications in C++, Ananda Rao Akepogu and Radhika Raju Palagiri, Pearson Education.

2. Data Structures and Algorithms in C++, S.Sahni, University Press (India) Private Limited, Second Edition.

3. Data Structures, Seymour Lipschutz, Schaum's Outlines, McGraw Hill.

		Digital Sign	al Proce	essors &	z Archi	tectures				
Course	Title		Open 2	Elective	I		B. Tech. EC	E VI Sem	L	
Course	Code	Category	He	ours/We	ek	Credits	Maximum Marks			
1804	604	EC	L	Т	С	Continuous Internal Assessment	End Exams	Total		
			3 3			30 70 100				
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs	
Course	Objecti	ives:								
•]	Го Unde	erstand and ana	lyze DSI	P algorit	hms &	architectur	res			
Course	Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will be	e able to		
CO 1	Under	rstand Aspects	of archit	ectures.						
CO 2	Under	Understand Memory mapped accelerators								
CO 3	Analyze DSP algorithms.									
CO 4	Map the algorithms to architectures									

Unit-I

DSP System Models: Introduction- Review of digital logic, Timing and Power in digital circuits, Quality metrics and bounds - Implementation Costs and Metrics, Architecture cost components, Examples of Architectures, Multi-objective Optimization.

Number representation- Scientific notation and Floating point

FIR and IIR Implementation: FIR filter, Serial FIR filter architectures, Simple programmable architecture, Block diagrams and SFGs, Dataflow Graphs, Iteration period, FIR filter iteration period, IIR filter iteration period, Computation Model.

Unit-II

Dedicated hardware and transforms – Implementation, Constraint analysis for IPB computation, Motivational examples for IPB, General IPB computation, Sample period calculation, Parallel architecture, Odd-even register reuse, Power consumption, Pipelining, Pipelining FIR filter, Timeinvariant systems, Valid pipelining examples, Feed forward cutsets, Balanced pipeline, Retiming basic concept, Example and uses of retiming

Resource sharing: adder example, Changing iteration period, Hardware assumptions and constraint analysis, Mathematical formulation, Examples with formulation, Example: Biquad filter, Hardware architecture, Review biquad folding sets, Complete biquad hardware,

Unit-III

Scheduling: Obtaining a folding schedule, ASAP schedule, Utilization Efficiency, ALAP schedule, Iteration period bound and scheduling, Retiming for scheduling, Blocked schedules, Overlapped

schedules, mproved blocked schedule, Allocation, Binding and Scheduling, Heuristic approaches to scheduling, Mathematical formulation, ILP formulation, List scheduling, Hardware model, Force Directed Scheduling.

Unit-IV

Programmable Sytems: Software Compilation, Optimization Examples, Loop optimizations, Software pipelining, FFT Optimization, CPUs and FPGAs, FFT on FPGA board, Understanding ELF files

Unit-V

Memory and Communication Systems: On-chip communication basics, Many-to-Many communication, AXI bus handshaking, HW accelerator for FPGA, DMA and arbitration, Network-on-chip basics, NoC - topologies and metrics, NoC- routing, NoC - switching and flow control, **Specialized Architectures:** Systolic Arrays – Background, CORDIC algorithm, Parallel implementation of FIR filters, Unfolding Transformation, Look ahead Transformation, Introduction to GPUs and Matrix multiplication

Text Books:

- 1. KK Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Wiley, NY, 1999.
- 2. Lars Wanhammar, Academic Press, 1999.

Reference Books:

1. Peter Pirsch, "Architectures for Digital Signal Processing", 2nd edition, John Weily, 2007

2. B. Venkataramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", 2 Edition, TMH, 2004.

3. Jervis, "Digital Signal Processing- A practical approach", 4th edition, Pearson Education, 2004.

			Analog	IC Desi	ign							
Course	Title		Open	Elective	e I		B. Tech. ECE VI Sem					
Course	Code	Category	He	ours/We	eek	Credits	Maxin	num Mari	ks			
18040	604	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	-		3	30	70	100			
Mid Exa	am Duration: 2Hrs End Exam Duration: 3Hr											
Course	Objecti	ves:										
• 7	Fo under	stand the conc	epts of A	Analog N	AOS de	vices and c	urrent mirror c	circuits				
• 7	Го Analy	ze the stability	y and fre	equency	compen	sation tech	niques of Op-	Amp Circ	uits			
Course	Outcon	nes: On succes	sful com	pletion	of this c	ourse, the	students will b	e able to				
CO 1	Under	stand the conc	epts of A	Analog N	AOS de	vices and c	urrent mirror c	rcuits				
CO 2	Design	different conf	iguration	n of Am	plifiers	and feedba	ck circuits					
CO 3	Descri	Design different configuration of Amplifiers and feedback circuits Describe the characteristics of frequency response of the amplifier and its noise.										
CO 4	Analyze the stability and frequency compensation techniques of Op-Amp Circuits											
CO5	Constr	Construct switched capacitor circuits and PLLs										

Unit-I

Introduction to Analog IC Design and Current Mirrors: Concepts of Analog Design – General consideration of MOS devices – MOS I/V Characteristics – Second order effects – MOS device models. Basic current mirrors- Cascode current mirrors- Active current mirrors- Large and Small signal analysis- Common mode properties.

Unit-II

Amplifiers and Feedback: Basic Concepts – Common source stage- Source follower- Common gate stage- Cascode stage. Single ended and differential operation- Basic Differential pair-Common mode response- Differential pair with MOS loads- Gilbert Cell. Feedback- General Consideration of feedback circuits- Feedback topologies- Effect of loading- Effect of feedback on Noise.

Unit-III

Frequency Response of Amplifiers and Noise: General considerations- Miller Effect and Association of Poles with Nodes, Common source stage- Source followers- Common gate stage-Cascode stage- Differential pair. Noise- Statistical characteristics of noise- Types of noise-Representation of noise in circuits- Noise in single stage amplifiers- Noise in differential pairs-Noise Bandwidth.

Unit-IV

Operational Amplifier Stability and Frequency Compensation: General Considerations-One and Two Stage Op Amps- Gain Boosting- Comparison- Common mode feedback- Input range limitations- Slew rate- Power Supply Rejection- Noise in Op Amps- General consideration of stability and frequency compensation- Multi pole system- Phase margin- Frequency compensation- Compensation of two stage op Amps- Other compensation techniques.

Unit-V

Switched Capacitor Circuits and PLLs: General Considerations- Sampling switches- Switched Capacitor Amplifiers-Switched Capacitor Integrator-Switched Capacitor Common mode feedback. Phase Locked Loops-Simple PLL-Charge pump PLLs-Non ideal Effects in PLLs-Delay locked loops- its Applications.

TEXT BOOK:

1. Behzad Razavi, Design of Analog CMOS Integrated Circuits^{II}, Tata McGraw Hill, 2001, 33rd re-print, 2016.

REFERENCES:

1. Phillip Allen and Douglas Holmberg, CMOS Analog Circuit Design Second Edition, Oxford University Press, 2004.

2. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, Wiley, 2009

3. Grebene, Bipolar and MOS Analog Integrated circuit designl, John Wiley & sons, Inc., 2003

		In	troducti	on to M	IEMS								
Course	Title		Open 2	Elective	I		B. Tech. EC	E VI Sem					
Course	Code	Category	He	ours/We	ek	Credits	Maxin	num Mar	ks				
1804	604	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3	-		3	30	70	100				
Mid Exa	am Dur	ation: 2Hrs											
Course	Objecti	ives:											
• I	ntroduc	tion to MEMS	and mic	ro fabric	ation								
•]	Го study	the essential m	naterial p	oropertie	es								
•]	Го study	various sensin	g and tra	ansducti	on tech	nique							
•]	Fo know	various fabric	ation and	d machii	ning pro	cess of MI	EMS						
• 7	Fo know	about the poly	mer and	loptical	MEMS	1							
		1 0		1									
Course	e Outcomes: On successful completion of this course, the students will be able to												
CO 1	Famil	Familiarized with the important concepts applicable to MEMS, their fabrication.											
CO 2	Analysis and testing of MEMS.												
CO 3	Apply	the MEMS for different applications.											

INTRODUCTION TO MEMS AND MICROFABRICATION: History of MEMS Development, Characteristics of MEMS-miniaturization - Micro electronics integration - Mass fabrication with precision. Micro fabrication - Microelectronics fabrication process-Silicon based MEMS processes- new material and fabrication processing- points of consideration for processing.

UNIT-II

ELECTRICAL AND MECHANICAL PROPERTIES OF MEMS MATERIALS: Conductivity of semiconductors, crystal plane and orientation, stress and stain – definition – relationship between tensile stress and stain- mechanical properties of silicon and thin films, Flexural beam bending analysis under single loading condition- Types of beam- deflection of beam-longitudinal stain under pure bending- spring constant, torsional deflection, intrinsic stress, resonance and quality factor.

UNIT-III

SENSING AND ACTUATION: Electrostatic sensing and actuation-parallel plate capacitor – Application-Inertial, pressure and tactile sensor- parallel plate actuator- comb drive. Thermal sensing and Actuations-thermal sensors-Actuators- Applications- Inertial, Flow and Infrared sensors. Piezoresistive sensors- piezoresistive sensor material- stress in flexural cantilever and membrane- Application-Inertial, pressure, flow and tactile sensor.

PIEZOELECTRIC SENSING AND ACTUATION: piezoelectric material propertiesquartz-PZT-PVDF –ZnO- Application-Inertial, Acoustic, tactile, flow-surface elastic waves. Magnetic actuation- Micro magnetic actuation principle- deposition of magnetic materials-Design and fabrication of magnetic coil.

UNIT-IV

BULK AND SURFACE MICROMACHINING: Anisotropic wet etching, Dry etching of silicon, Deep reactive ion etching (DRIE), Isotropic wet etching, Basic surface micromachining process- structural and sacrificial material, stiction and antistiction methods, Foundry process.

UNIT-V

POLYMER AND OPTICAL MEMS:Polymers in MEMS- polymide-SU-8 liquid crystal polymer(LCP)-PDMS-PMMA-Parylene- Flurocorbon, Application-Acceleration, pressure, flow and tactile sensors. Optical MEMS-passive MEMS optical components-lenses-mirrors-Actuation for active optical MEMS.

Text books:

Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
 Julian W.Gardner, Vijay K Varadhan, "Microsensors, MEMS and Smart devices", John Wiley & sons, 2001.

References:

 Gaberiel M.Rebiz, "RF MEMS Theory, Design and Technology", John Wiley & Sons, 2003.
 Charles P.Poole, Frank J.Owens, "Introduction to nanotechnology" John Wiley & sons, 2003.

Course	Title	Analog and	d digita	comm	inicatio	n Lab	B. Tech. EC	E VI Sem	1				
Course	Code	Category	He	ours/We	ek	Credits	Maxin	num Mar	ks				
1804	606	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			-	-	3	1.5	50	50	100				
							End Exam	n Duratio	n: 3Hrs				
Course	Objecti	bjectives:											
• I	Design a	nd generation of	of AM,P	M, FM,	ASK,PS	SK, QPSK	communication	n techniqu	ues.				
• (Usage of	Communication	ons test	equipme	nt.								
Course	Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will be	e able to					
CO 1	Use th	e knowledge o	f Ampli	tude, Fre	equency	and Pulse	Modulation S	ystems in					
	develo	ping analog Co	mmunic	cation sy	stems								
CO 2	Use th	ne knowledge o	of TDM.	PCM. I	Delta M	odulation.	FSK. PSK. DF	SK.OPSH	K in				
001		ping Digital Co	,	,		o <i>uu</i> uuoii,	- ~, - ~,	, X - , X -					
				•		4							
CO 3		m measuremen		ensitivit	y, Selec	tivity and	Fidelity of Con	nmunicati	ion				
	•	tems and system											
CO 4	Use test equipment to test various communication systems they develop												
CO5	Use the knowledge of Amplitude, Frequency and Pulse Modulation Systems in												
	developing analog Communication systems												
		1 0		~)									

Part- A: Analog Communication Lab:

- 1. Amplitude modulation and demodulation.
- 2. Frequency modulation and demodulation.
- 3. Characteristics of Mixer.
- 4. Pre-emphasis & de-emphasis.
- 5. Pulse Amplitude Modulation and demodulation.
- 6. Pulse Width Modulation and demodulation.
- 7. Pulse Position Modulation and demodulation.
- 8. Radio Receiver measurements Sensitivity, Selectivity, & Fidelity.

Part- B: Digital Communication Lab:

- 1. Sampling Theorem verification.
- 2. Time division multiplexing.
- 3. Pulse Code Modulation.

- 4. Delta modulation.
- 5. Frequency shift keying Modulation and Demodulation.
- 6. Phase shift keying Modulation and Demodulation.
- 7. Differential phase shift keying Modulation and Demodulation.
- 8. QPSK Modulation and Demodulation

Course	Title	Digital Signa	al Proce	ssing La	ab		B. Tech. EC	E VI Sem	l				
Course	Code	Category	He	ours/We	ek	Credits	Maxin	num Mar	ks				
18040	607	EC	L	Т	Р	С	Continuous Internal Assessment	Internal Assessment End Exams Total					
			-		3	1.5	50	50	100				
Course							End Exam	Duration	n: 3Hrs				
• T • T	'o under 'o write		of TMS de for ba	320C674 asic DSF	48 proce 9 operati	essors ions and ex	xecuted using T	-	essors				
CO 1	Analyz process	e	ital signa	als using	; mat lat	and the l	basic operation	s of signa	1				
CO 2	Obtain	the spectral p	oaramete	ers of wi	ndowing	g functions	5.						
CO 3	Design FIR and IIR filters for desired specifications												
CO 4	Ũ	Design and implement DSP algorithms in software using a computer language such as C with TMS320C6748 floating point processor.											

List of Experiments: (Minimum of 5 experiments are to be conducted from each part)

Software Experiments (PART – A)

- 1. Generation and display of fundamental discrete-time sequences.
- 2. Finding Power and (or) Energy of a given discrete-time sequence.
- 3. Convolution of two discrete-time sequences with and without built in command.
- 4. Correlation between two discrete-time sequences with and without built in command.
- 5. DFT of a given signal with and without built in command.
- 6. Design of FIR filter using windowing technique.
- 7. Design of IIR filters using Impulse invariance or bilinear transformation.
- 8. Design of analog filters.

Using DSP Processor kits (Floating point) and Code Composure Studio (CCS) (PART – B)

- 1. Introduction to DSP Processors.
- 2. Generation of fundamental signals and plot the same as a waveform showing all the specifications.

- 3. Finding Power and (or) Energy of a given signal.
- 4. Convolution of two discrete-time sequences.
- 5. Correlation between two discrete-time sequences
- 6. DFT of a given signal
- 7. Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 8. Design of IIR filter using any of the available methods and verify the frequency response of

the filter.

9. Design of analog filters.

Equipment/Software Required:

- 1. Licensed MATLAB software with required tool boxes for 30 users.
- 2. DSP floating Processor Kits with Code Composure Studio (8 nos.)
- 3. Function generators
- 4. CROs
- 5. Regulated Power Supplies

Course Title	MICROWAVE & OPTICAL COMMUNICATIONS LAB					B. Tech. ECE VII Sem			
Course Code	Category	Hours/Week Cred			Credits	Maximum Marks			
1824608	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
				4	2	50	50	100	
	End Exam Duration: 3Hrs								
 To provide knowledge on various types of waveguides. To find the S-matrix of different Junctions and to obtain Gun Diode and RKO characteristics. To find numerical aperture and bending losses of given optical fiber. Course Outcomes: On successful completion of this course, the students will be able to 									
CO 1 Analyze the characteristics of different microwave sources.									
CO 2 Mea	Measure the parameters of wave guide and microwave junctions.								
CO 3 Exa	Examine the characteristics of optical fiber and sources.								
CO 4 Ver	Verify the characteristics of microwave antennas								

Part – A (Any 7 Experiments):

- 1. Reflex Klystron Characteristics.
- **2.** Gunn Diode Characteristics.
- 3. Attenuation Measurement.
- 4. Directional Coupler Characteristics.
- 5. VSWR Measurement.
- **6.** Impedance Measurement.
- 7. Waveguide parameters measurement.
- 8. Scattering parameters of Directional Coupler.
- 9. Scattering parameters of Magic Tee.

Part – B (Any 5 Experiments):

- 1. Characterization of LED.
- 2. Characterization of Laser Diode.
- **3.** Intensity modulation of Laser output through an optical fiber.
- 4. Measurement of Data rate for Digital Optical link.
- 5. Measurement of NA.
- 6. Measurement of losses for Analog Optical link.
- 7. Radiation Pattern Measurement of Antennas (at least two antennas).